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ABSTRACT
We collected traces of how 37 users interacted with 9 progressively
streamed and rendered 3D meshes. We analyze the traces and dis-
cuss the insights that we learned in relation to design of efficient
and scalable progressive mesh streaming systems. Our traces in-
dicate that user actions are predictable and exhibit skewed access
pattern. This finding could lead to design of efficient pre-fetching
and caching techniques for progressive mesh streaming.

Categories and Subject Descriptors I.3.2a [Graphics Systems]:
Distributed/Network Graphics

General Terms Human Factors, Measurements, Performance

Keywords Progressive Meshes, Interaction, User Behavior

1. INTRODUCTION
Advances in 3D scanning, range data collection, and digital sculpt-

ing techniques have eased the creation of high quality 3D meshes.
These meshes are increasingly being shared over the Internet through
progressive streaming, in applications such as virtual earth, virtual
art gallery, and online shops. 3D meshes are typically data rich and
demand high network bandwidth and computational power. For
example, a regular mesh like the Thai Statue (Figure 1, left) has 5
million vertices (122 MB after gzip) takes 16 minutes to download
even at 1 Mbps. When these meshes are viewed on portable de-
vices with low bandwidth and slow CPUs, delays in both transmit-
ting and rendering become unavoidable. To minimize negative user
experience, the streaming system needs to prioritize data chunks
according to user needs and efficiently cache the most frequently
viewed data. Designing such systems requires a thorough under-
standing of user behaviors in viewing 3D meshes.

Most previous work on user interactions with 3D objects focused
on design of specific interaction techniques (e.g., the study by Chen
et. al [2] and Hinckley et. al [4]). This paper, however, studies user
behavior from the system design point of view, such as predictabil-
ity (for prefetching) and locality of access patterns (for caching),
similar to the spirit of the landmark studies for the Web [5] and file
system [7]. No such prior study exists for progressive meshes. This
paper presents our first step towards filling this gap.
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We conducted a user experiment with 37 users interacting with
9 meshes. We log the user’s actions while they interact and view
the meshes in a mock online shop. We present the analysis of these
traces in this paper, and highlight findings that are significant to the
design of efficient and scalable progressive mesh streaming sys-
tems. In particular, we found that (i) in certain scenarios, user ac-
tions are highly predictable, making pre-fetching useful in these
cases; (ii) users’ viewpoint concentrates on part of the meshes,
making caching these popular spots useful.

Figure 1: Meshes used in experiment. Left to right: Thai Statue
(5 million vertices), Dragon (3.6 million vertices), and Happy
Buddha (0.5 million vertices).

2. USER STUDY
Meshes. Three 3D meshes are chosen from the freely available

Stanford 3D Scanning Repository1: Happy Buddha, Dragon, and
Thai Statue. These meshes vary in complexity (amount of vertices),
orientation, and symmetry in space from default viewing direction.
Happy Buddha is the simplest, is vertically oriented, and has a de-
fault viewing direction orthogonal from the face of the Buddha.
From that direction, the mesh is asymmetric between front and
back. The geometric shape of Happy Buddha is somewhat repre-
sentative of all human-like statues. Dragon is more complex and is
horizontally oriented. The default viewing point is from one side of
the body. Unlike Happy Buddha, it is front-back symmetric relative
to the default viewing direction. The geometric shape of Dragon
is somewhat representative of most mammals. Thai Statue is the
most complex and is actually a compound mesh composed of three
identical sides, each with three different objects: a Goddess, an ele-
phant, and a dragon, stacking vertically from top to bottom. These
three sides connect to form a triangular cylinder. There are three
possible default viewing directions, one each from three corners of
the triangular mesh. The Thai Statue is included as an example of
complex compound mesh.

1http://graphics.stanford.edu/data/3Dscanrep/
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We replicate each mesh above twice, generating nine meshes in
total. We added one localized visual defect, by denting a small
region, to each replicated mesh without changing its number of
vertices or faces. The reason for adding the defects will be ex-
plained later. The location and nature of the defects vary between
the meshes. As Happy Buddha is relatively simplier and has a
smooth surface, its defect is more obvious than Dragon and Thai
Statue. Defects for the later two meshes, due to the irregular sur-
faces, are hard to find unless the user zooms in considerably.

The meshes are encoded progressively and streamed over a sim-
ulated network of 320Kbps and 400ms round trip time.

Design and Procedure Our experiment mimics the following
general real world scenario. Customers are shopping in an online
antique store. Each product in the store has a number of items, and
each item is represented by a 3D mesh closely resembling the cor-
responding real world item. These items vary in quality, and some
have visible defects. Before purchasing, customers will carefully
examine the available items for a product in order to pick the best
item available for that product category.

We designed our experiment using a simple case of the above
scenario. Our online store has three different products, correspond-
ing to the three different meshes mentioned earlier. Each product
has three available items in varying quality. Two of them have vi-
sual defects (note: defects are created without changing any mesh
characteristics). Due to the different complexity of each mesh, the
defects are easier to find in the simpler meshes (Happy Buddha)
compared to the more complex ones (Thai Statue and Dragon).

The participants were first instructed about the keyboard com-
mands to view and interact with the 3D meshes, and given brief
practice of these commands on a simple mesh before starting the
experiment. The participants were presented with an user interface
mimicking an online catalog with three products. For each prod-
uct, images of three items (i.e., three versions, one original and two
with defects) are shown on the screen. The order of the products
are randomized to avoid order effects. The participants’ job is to
pick the best item among the three. Each item can be viewed in any
order and if desired, multiple times. When a participant selects an
item, a new viewing window (width of 14cm and height of 15cm,
with a resolution of 500x500 pixels) opens, and the 3D mesh corre-
sponding to that item is progressively streamed and rendered in the
window. The participants can interact freely with the mesh until
they close the window. They would mark the item to be purchased
after viewing all three items and move on to the next product. Each
participant must go through all three products to complete the ex-
periment.

During the experiment, users’ key press actions and view point
transformations were logged for offline analysis. The available
keys along with its abbreviations are as follows, revolve clockwise
(REC) and anti-clockwise (REAN), rotate clockwise (ROC) and
anti-clockwise (ROAN), move up (MU), move down (MD), move
right (MR), move left (ML), tilt back (TB), tilt forward (TF), zoom
in (ZIN) and zoom out (ZOUT). The rotate, revolve, and tilt oper-
ations refer to rotating about the z-axis, y-axis, and x-axis, respec-
tively. The axes follow the standard OpenGL convention.

Participants. A total of 25 male and 12 female participants,
aged 19 to 36 (mean 23), mostly from the university community
participated in the experiment. None had any visual handicaps.

3. RESULTS AND IMPLICATIONS
In this section, we present our analysis on the user behavior. We

present only on the analysis of the original (non-defect) statues,
unless otherwise specified. In addition, we also discuss what im-
plications these results have on system design.

3.1 Session Length
Session length refers to the time each user spends in viewing

a mesh. Generally, the session length is short, with the average
values of 107s, 76s, 47s for Thai Statue, Dragon, and Happy Bud-
dha, respectively (see Table 1). Figure 2(a) shows the distribution.
The session length decreases with complexity of the meshes, as ex-
pected. The session length fits the log-normal distribution.
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Figure 2: (a) Session Length and (b) Inter-stroke Time

Mesh Session Length Think Time
Mean(s) Max(s) Mean(ms) Max(s)

Thai Statue 107 376 593 25
Dragon 76 272 574 20

Happy Buddha 47 98 403 13

Table 1: Session Length and Think Time

3.2 Think Time
We refer to the time between two key strokes as inter-stroke time.

Consecutive key strokes of the same type with inter-stroke time
smaller than 20 ms are grouped together as one operation. The
time between two operations is think time. We choose the threshold
of 20 ms because there is an obvious gap between 5 ms and 35 ms
in the CDF of inter-stroke times for all meshes (see Figure 2(b)).

We find that think time follows similar distributions for all of
the three meshes (Figure 3(a)). About 90% of the think time is
smaller than a second. There is a jump in the curve of think time
distribution for all the three meshes – about 5% of the think time
clusters around 0.5 seconds. We hypothesize that this is related to
the 0.4-second round trip time in our experiments. After a user
performs an operation, it takes 0.4 seconds before the user can see
progressive refinement of the mesh (although the system responses
to the change in viewpoint immediately). Some users might wait
for the refinement to come before the next operation.

The mean and maximum think time are shown in Table 1. We
note that the maximum is up to 50 times larger than the mean.

To investigate the relation between think time and viewpoints,
we classify the viewpoints into 4 regions: front-far (FF), front-near
(FN), back-far (BF), and back-near (BN), based on front/back and
far/near. We find that the think time distribution is not affected by
the viewpoint (see Figure 3(b)).

3.3 Operations
Besides the session length and think time, it is also interesting to

see if user actions are predictable. If so, pre-fetching can be used
to improve the mesh quality and reduce response time.
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Figure 3: Think Time (x-axis in log scale).

Figure 4(a) shows the probability of occurrences of 12 different
operations on the traces from each of 9 meshes, displayed as a bub-
ble chart. The bubble size indicates the probability of an operation
occurring for a mesh. We can see that the most frequently used op-
erations are revolving (rotate around y-axis) and zooming. Further,
zooming in is used more frequently than zooming out, indicating
that users tend to zoom in to a comfortable distance to see the mesh
with more details. Indeed, we observe that many users zoom in
first, and then revolve around the y-axis.

With these distributions, we can do a simple prediction of the
next operation to be taken by a user without any other information.
The prediction could be more accurate, however, if we consider the
current viewpoint of the user and the previous action of the user.

We first examine whether the probability of an operation relates
to the viewpoint of the users. Figure 4(b) shows that the distribu-
tion of operations is different in the 16 regions for Thai Statue. For
example, the probability of zooming in (ZIN) is higher in the right-
top, front-far region (RTFF). Since the default viewpoint lies in this
region, users tend to zoom in to a comfortable distance first and
then move to other regions. Dragon (Figure 4(c)), however, shows
different behavior. First, zoom-in is not as frequent in the default
view, since Dragon has less details than Thai Statue and can be
viewed comfortably with the default distance. Second, users fre-
quently tilt, possibly due to the horizontal orientation of Dragon.
Our findings indicate that the viewpoint affects the probability of
taking a next operation, but this effect depends on the size and
shape of the mesh, and thus is difficult to have a general frame-
work for prediction based on viewpoints. Past history of user in-
teractions for a particular mesh, however, could be used for more
accurate mesh-specific prediction.

Figure 4(d) shows the conditional probability of taking the next
operation given the previous operation for Thai Statue. The shaded
diagonal shows that the same operation has the significantly larger
probability (e.g., more than 0.93 for revolving) of being taken next.
The other meshes exhibit the similar pattern. Such high predictabil-
ity points to the efficacy of pre-fetching as a way to reduce response
time and improve the viewing quality.

Finally, we consider the dependencies on viewpoint and previ-
ous operation together. Figure 4(e) shows the probability of tak-
ing a given operation in a given viewpoint region when the pre-
vious operation is zooming in for Thai Statue. Figure 4(f) gives
such probability when the previous operation of moving down for
Dragon. Both figures show that the dependence on viewpoint is
non-negligible, but is still predictable for a given mesh. For in-
stance, zooming out is more frequent after zooming in, if the view-
point is nearer to the mesh. This behavior is expected. Finer divi-
sion of viewpoint regions should yield more accurate prediction.

3.4 Access Pattern
Proxy caching of meshes is useful in reducing the service load.

In this section, we show that the user traces exhibit access patterns
that can lead to efficient caching.

Caching for Mesh Streaming. In mesh streaming, vertices are
often grouped into chunks [3] for transmission. These chunks can
be cached at a proxy to reduce server overhead. To study the use-
fulness of proxy caching, we look at the access pattern to chunks.

We first replay the log of operations from the users, and generate
a list of chunks accessed by users during the experiment. From
these chunk traces, we count the number of times each chunk is
accessed. We then sort the chunks in decreasing order of the access
count, and plot the cumulative access count versus rank in Figure
5(a). We normalize both axes to between 0 and 1 so that we can plot
all three meshes on the same graph. Figure 5(a) shows how many
requests we can satisfy (i.e., hit rate) by storing the most frequently
requested chunks in a proxy. The x-axis denotes the number of
chunks stored in the proxy, as a fraction of total number of chunks
requested. It can be observed that by building a static cache that
stores 20% of the most frequently accessed chunks, the proxy can
achieve more than 70% hit rate for Thai Statue and Dragon, and
55% for Happy Buddha.
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Figure 5: Cumulative Access Count versus Rank

Caching of Remote Rendering. For rendering on mobile de-
vices [1] or for protection of mesh data [6], the server could send a
rendered image directly according to the users’ viewpoint. In this
scenario, the caching proxy can cache the rendered images. We can
similarly find the viewpoints “visited” by the most users. A view-
point visited multiple times by the same user is only counted once,
since the user can keep the received image locally and need not
request it the second time. Figure 5(b) shows a plot similar to Fig-
ure 5(a), but for access frequency of viewpoints. The figure shows
the hit rate at the caching proxy if we choose to store pre-rendered
images corresponding to the most frequently accessed viewpoints.
The distribution is not as skewed as access count for chunks, but
still, caching the rendered images for 20% of the most frequently
accessed viewpoints can yield 40 - 50% hit rate.

Caching of Vertices and Pixels. Caching mesh data in graphic
card memory (e.g. using VBO (Vertex Buffer Object) and PBO
(Pixel Buffer Object) supported in OpenGL), could significantly
increase the rendering speed when the memory bandwidth is the
bottleneck. For graphic cards without enough memory to store the
whole mesh, we could just store the most frequently viewed part of
the mesh in the graphic card memory.

We replay all the user traces, and count the number of times each
face is viewed. We normalized the number of views of each face
and visualize them with a heat map (Figure 6(a)). We can see that
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Figure 4: Frequency of User Actions

the most frequently viewed region of Happy Buddha (viewed 4205
times) is the base between the two legs because it is visible from
both the front and the back. Figure 6(b) plots the normalized cumu-
lative view count of faces versus rank, similar to Figure 5. We can
see that the locality is slightly less than that in the previous two sce-
narios, but for Happy Buddha and Thai Statue, hit rate of 40% can
be achieved by storing 20% of the most frequently viewed faces in
the graphic card memory. The mesh Dragon has the least locality.
We hypothesize that this is because people tend to view Dragon
at many different viewpoints due to its complex shape, leading to
more evenly distributed viewpoints around the mesh.
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Figure 6: (a) The normalized number of views for each face.
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4. CONCLUSION
The analysis of user traces reveals that user actions are predictable

to certain extent. The prediction based on previous action is simple
and effective. Further, locality exists in both data and viewpoint
access. By storing the most popular mesh data in caching proxies,
the server overhead could be significantly reduced.

We plan to conduct another user study on the effect of network
parameters on user interaction with the progressively streamed meshes.
In particular, we are interested in understanding the user’s tolerance
level to delay and bandwidth in the network, the two factors that af-
fect the time and rate at which a mesh refines its resolution.

Acknowledgement: This project is supported by National Uni-
versity of Singapore Academic Research Fund R-252-000-306-112.

5. REFERENCES
[1] P. Bao and D. Gourlay. A framework for remote rendering of

3-D scenes on limited mobile devices. IEEE Transactions on
Multimedia, 8(2):382–389, 2006.

[2] M. Chen, S. Mountford, and A. Sellen. A study in interactive
3-D rotation using 2-D control devices. In Proceedings of
SIGGRAPH’88, pages 121–129, Atlanta, GA, 1988.

[3] W. Cheng and W. T. Ooi. Receiver-driven view-dependent
streaming of progressive mesh. In Proceedings of NOSSDAV
’08, pages 9–14, Braunschweig, Germany, 2008.

[4] K. Hinckley, J. Tullio, R. Pausch, D. Proffitt, and N. Kassell.
Usability analysis of 3D rotation techniques. In Proceedings
of ACM UIST’97, pages 1–10, Banff, Canada, 1997.

[5] B. A. Huberman, P. Pirolli, J. Pitkow, and R. Lukose. Strong
regularities in world wide web surfing. Science, 280(5360):95,
1998.

[6] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia,
P. Cignoni, and R. Scopigno. Protected interactive 3d graphics
via remote rendering. ACM Trans. Graph., 23(3):695–703,
2004.

[7] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A trace-driven analysis of the
UNIX 4.2 BSD file system. In Proceedings of ACM SOSP’85,
pages 15–24, Orcas Island, WA, 1985.

884


